Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation.

نویسندگان

  • Marije Bartels
  • Christian R Geest
  • Marc Bierings
  • Miranda Buitenhuis
  • Paul J Coffer
چکیده

BACKGROUND The clinical use of chromatin-modulating drugs, such as histone deacetylase inhibitors, for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last few years. Nonetheless, little is currently known concerning their effects on myelopoiesis. DESIGN AND METHODS We utilized an ex vivo differentiation system in which umbilical cord blood-derived CD34(+) cells were treated with trichostatin A, sodium butyrate and valproic acid to evaluate the effect of histone deacetylase inhibitor treatment on myeloid lineage development, colony-forming potential, proliferation, and terminal neutrophil differentiation. RESULTS Trichostatin A treatment modestly reduced progenitor proliferation, while sodium butyrate and valproic acid resulted in concentration-dependent effects on proliferation and apoptosis. Addition of valproic acid uniquely stimulated CD34(+) proliferation. Sodium butyrate treatment inhibited terminal neutrophil differentiation both quantitatively and qualitatively. Addition of 100 microM valproic acid resulted in increased numbers of mature neutrophils with a block in differentiation at increasing concentrations. Sodium butyrate and valproic acid treatment resulted in increased acetylation of histones 3 and 4 while trichostatin A, sodium butyrate and valproic acid had differential effects on the acetylation of non-histone proteins. CONCLUSIONS Individual histone deacetylase inhibitors had specific effects on cell fate decisions during myeloid development. These data provide novel insights into the effects of histone deacetylase inhibitors on the regulation of normal hematopoiesis, which is of importance when considering utilizing these compounds for the treatment of myeloid malignancies and bone marrow failure syndromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEF2C and EBF1 Co-regulate B Cell-Specific Transcription

Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action...

متن کامل

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...

متن کامل

Genome-wide analysis of histone acetylation dynamics during mouse embryonic stem cell neural differentiation

Epigenetic modification as an intrinsic fine-tune program cooperates with key transcription factors to regulate the cell fate determination. The histone acetylation participating in neural differentiation of pluripotent stem cells is expected but not well studied. Here, using acetylated histone H3 ChIP-sequencing (ChIP-seq), we demonstrate that the histone H3 acetylation level is gradually incr...

متن کامل

C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation.

C/EBPalpha is an essential transcription factor required for myeloid differentiation. While C/EBPalpha can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBP...

متن کامل

The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells

Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 95 7  شماره 

صفحات  -

تاریخ انتشار 2010